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Abstract. A previously-developed hybrid particle-continuum method [J. B. Bell, A. Garcia and S. A. Williams, SIAM
Multiscale Modeling and Simulation, 6:1256-1280, 2008] is generalized to dense fluids and two and three dimensional flows.
The scheme couples an explicit fluctuating compressible Navier-Stokes solver with the Isotropic Direct Simulation Monte
Carlo (DSMC) particle method [A. Donev and A. L. Garcia and B. J. Alder, J. Stat. Mech., 2009(11):P11008, 2009]. To achieve
bidirectional dynamic coupling between the particle (microscale) and continuum (macroscale) regions, the continuum solver
provides state-based boundary conditions to the particle subdomain, while the particle solver provides flux-based boundary
conditions for the continuum subdomain; see [A. Donev, J.B. Bell, A. Garcia, and B. Alder, SIAM Multiscale Modeling
and Simulation, 8:871-911, 2010.] for details. This paper summarizes two important numerical tests: First, the equilibrium
diffusive (Brownian) motion of a large spherical bead suspended in a particle fluid is examined, demonstrating that the hybrid
method correctly reproduces the velocity autocorrelation function of the bead but only if thermal fluctuations are included
in the continuum solver. Second, the new scheme is applied to the well-known adiabatic piston problem and we find that it
correctly reproduces the slow non-equilibrium relaxation of the piston toward thermodynamic equilibrium but, again, only if
the continuum solver includes stochastic (white-noise) flux terms. These two fundamental examples clearly demonstrate the
need to include fluctuations in continuum solvers employed in hybrid multiscale methods.
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INTRODUCTION

With the increased interest in nano- and micro-fluidics, it has become necessary to develop tools for hydrodynamic cal-
culations at the atomistic scale [1, 2, 3]. While the Navier-Stokes-Fourier continuum equations have been surprisingly
successful in modeling microscopic flows [4], there are several effects present at microscopic scales that are difficult
to account for in models relying on a purely PDE approximation. For example, it is well known that the Navier-Stokes
equations fail to describe flows in the kinetic regions (large Knudsen number flows) that appear in small-scale gas
flows [5]. It is also known that hydrodynamic fluctuations play an important role in fluid problems at microscopic and
mesoscopic scales, for example in the Brownian motion of suspended microscopic objects. Other examples in which
spontaneous fluctuations may significantly affect the dynamics include the breakup of droplets in jets [6, 7, 8], Brow-
nian molecular motors [9], Rayleigh-Bernard convection [10], Kolmogorov flows [11, 12], Rayleigh-Taylor mixing
[13], and combustion and explosive detonation [14].

Unfortunately, particle methods, such as DSMC, lack the efficiency necessary to study realistic problems because of
the very large numbers of particles needed to fill the required computational domain. Often the computational effort is
expended on particles far away from the region of interest, where a description based on the Navier-Stokes equations
would be adequate. In this regard hybrid methods are a natural candidate to combine the best features of the particle
and continuum descriptions [15, 16]. A particle method can be used in regions where the continuum description fails
or is difficult to implement, and a more efficient continuum description can be used around the particle domains.

In a recent paper [17] we describe the implementation of an efficient hybrid for the study of Brownian dynamics.
Here we discuss an important result discovered in our testing of this hybrid, namely that the standard, deterministic
PDE solver suppresses fluctuations in the particle region, introducing significant errors in the Brownian motion. On
the other hand, using a stochastic PDE scheme yields accurate results, as shown in the two cases presented below.



VELOCITY AUTOCORRELATION FUNCTION (VACF) OF A SPHERICAL BEAD

As an illustration of the correct hydrodynamic behavior of the hybrid algorithm, we study the velocity autocorrelation
function (VACF) C(t) = 〈vx(0)vx(t)〉 for a large neutrally-buoyant impermeable bead of mass M and radius R diffusing
through a dense Maxwell I-DSMC stochastic fluid [18] of particles with mass m�M and collision diameter D� R
and density (volume fraction) φ [mass density ρ = 6mφ/(πD3)]. The VACF problem is relevant to the modeling of
polymer chains or (nano)colloids in solution (i.e., complex fluids), in particular, the integral of the VACF determines
the diffusion coefficient which is an important macroscopic quantity. Furthermore, the very first MD studies of the
VACF for fluid molecules led to the discovery of a long power-law tail in C(t) [19] which has since become a standard
test for hydrodynamic behavior of methods for complex fluids [20, 21, 22].

The fluctuation-dissipation principle [23] points out that C(t) is exactly the decaying speed of a bead that initially
has a unit speed, if only viscous dissipation was present without fluctuations, and the equipartition principle tells us
that C(0) =

〈
v2

x
〉
= kT/2M. Using these two observations and assuming that the dissipation is well-described by a

continuum approximation with stick boundary conditions on a sphere of radius RH , C(t) has been calculated from
the linearized (compressible) Navier-Stokes (NS) equations [24, 25]. The results are analytically complex even in the
Laplace domain, however, at short times an inviscid compressible approximation applies. At large times the compress-
ibility does not play a role and the incompressible NS equations can be used to predict the long-time tail [25, 26]. At
short times, t < tc = 2RH/cs, the major effect of compressibility is that sound waves generated by the motion of the
suspended particle carry away a fraction of the momentum with the sound speed cs, so that the VACF quickly decays
from its initial value C(0) = kBT/M to C(tc)≈ kBT/Me f f , where Me f f = M+2πR3ρ/3 [25]. At long times, t > tvisc =

4ρR2
H/3η , the VACF decays as with an asymptotic power-law tail (kBT/M)(8

√
3π)−1(t/tvisc)

−3/2, in disagreement
with predictions based on the Langevin equation (Brownian dynamics), C(t) = (kBT/M)exp(−6πRHηt/M).

We performed purely particle simulations of a diffusing bead in various I-DSMC fluids in Refs. [18, 22]. In purely
particle methods the length of the runs necessary to achieve sufficient accuracy in the region of the hydrodynamic
tail is often prohibitively large for beads much larger than the fluid particles themselves. It is necessary to use hybrid
methods and limit the particle region to the vicinity of the bead in order to achieve a sufficient separation of the
molecular, sonic, viscous, and diffusive time scales and study sufficiently large box sizes over sufficiently long times.
The interaction between the I-DSMC fluid particles and the bead is treated as if the fluid particles are hard spheres
of diameter Ds, chosen to be somewhat smaller than their interaction diameter with other fluid particles (specifically,
we use Ds = D/4) for computational efficiency reasons, using an event-driven algorithm [27]. Upon collision with
the bead the relative velocity of the fluid particle is reversed in order to provide a no-slip condition at the surface
of the suspended sphere [27] (slip boundaries give qualitatively identical results). We have estimated the effective
(hydrodynamic) colloid radius RH from numerical measurements of the Stokes friction force F = −6πRHηv and
found it to be somewhat larger than the hard-core collision radius R+Ds/2, but for the calculations below we use
RH = R+Ds/2.

For the hybrid calculations, we localize the particle subdomain to the continuum cells that overlap or are close to
the moving bead. The location of the particle subdomain is updated periodically as the bead moves. The algorithm
that we use tries to fit the particle subdomain as closely around the bead while ensuring that there are a certain
number of micro cells in-between the surface of the bead and the particle-continuum interface. The exact shape of the
particle subdomain thus changes as the bead moves and the number of particles employed by the hybrid fluctuates,
especially when the bead is small compared to the continuum cells. In the calculations shown in Fig. 1, the I-DSMC
fluid has a density (volume fraction) φ = 0.5 and collision frequency prefactor χ = 0.62. The adiabatic sound speed
is cs =

√
5kBT/(3m) and viscosity is η = η̃D−2√mkBT , where we measured η̃ ≈ 0.75. Note that in atomistic time

units t0 = D
√

m/kBT the viscous time scale is tvisc/t0 ≈ 6φ(RH/D)2/(3πη̃)≈ 0.4(RH/D)2.
As a first test case, in Fig. 1 (left) we compare against the particle data from Ref. [22], for which the size of the bead

is R = 1.25D, M = 7.81m, and the simulation box is L = 1 = 25D, which corresponds to 243 micro cells and about
N ≈ 1.5 ·104 particles. The hybrid runs used macro cells each composed of 43 micro cells, which corresponds to about
N0 = 80 particles per cell, and the size of the particle subdomain fluctuated between about 3 ·103 and 6 ·103 particles
due to the change of the location of the bead relative to the continuum grid. The particle result is the average over 10
runs, each of length t/tvisc ≈ 2 ·105, while the hybrid results are from a single run of length t/tvisc ≈ 7.5 ·105. It is seen
in the figure that both the deterministic and the fluctuating hybrid reproduce the particle results closely, with a small but
visible difference at long times where the deterministic hybrid under-predicts the magnitude of the tail in the VACF.
We also show results from a hybrid run with a twice larger simulation box, L = 2, which marginally increases the
computational effort in the hybrid runs, but would increase the length of purely particle runs by an order of magnitude.
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FIGURE 1. Normalized velocity autocorrelation function (VACF) C(t)/(kBT/M) for a neutrally-buoyant hard spherical bead of
mass M suspended in a fluid of I-DSMC particles of diameter D, for two different bead sizes, a small bead of radius R = 1.25D
(left) and a large bead of radius R = 6.25D (right). A log-log scale is used to emphasize the long-time power law tail and the
time is normalized by the viscous time tvisc, so that the results should be approximately independent of the actual bead radius. The
inset shows the initial decay of the VACF on a semi-log scale, where the time is normalized by the sonic time scale tc. Periodic
boundary conditions with a cubic cell of length L are employed, and the sound crossing time tL is indicated. Results from purely
particle simulations are shown with a dashed-dotted line, and the incompressible hydrodynamic theory is shown in with a dotted
line. Results from hybrid runs are also shown with a solid line for the stochastic hybrid and dashed line for the deterministic hybrid,
for both the same box size as the particle runs (red) and a larger simulation box (green).

The hydrodynamic tail becomes pronounced and closer to the theoretical prediction for an infinite system, as expected.
As a second, more difficult test, in Fig. 1 (right) we report results from particle simulations for a much larger bead,

R = 6.25D, M = 976m, and the simulation box is L = 2 = 50D, which corresponds to N ≈ 1.2 ·105 particles. We have
performed a variety of hybrid runs and Fig. 1 (right) shows results from runs with macro cells each 33 micro cells,
as well as results for a larger simulation box, L = 3, and macro cells each composed of 43 micro cells. The particle
results are the average over 5 runs each of length t/tvisc ≈ 2.5 · 103, while the hybrid results are from a single run of
length t/tvisc ≈ 7.5 · 103. The hybrid runs had a particle subdomain containing about 2 · 104 particles. We observed
little impact of the size of the continuum cell size or the size of the particle subdomain. The results show that the
stochastic hybrid correctly reproduces the tail in the VACF, while it slightly over-estimates the VACF at short times.
The deterministic hybrid, on the other hand, strongly under-estimates the magnitude of C(t) at both short and long
times. It is particularly striking that the deterministic hybrid fails to reproduce the magnitude of the long time tail (and
thus the diffusion coefficient), demonstrating the importance of including fluctuations in the continuum domain.

RELAXATION OF AN ADIABATIC PISTON

The problem of how thermodynamic equilibrium is established has a long history in statistical mechanics [28]. The
adiabatic piston problem is one of the examples used to study the fluctuation-driven relaxation toward equilibrium
[29, 30, 31] that is simple enough to be amenable to theoretical analysis but also sufficiently realistic to be relevant
to important problems in nano-science such as Brownian motors [9, 32]. We study the following formulation of the
adiabatic piston problem. A long quasi one-dimensional box with adiabatic walls is divided in two halves with a
thermally-insulating piston of mass M�m that can move along the length of the box without friction. Each of the two
halves of the box is filled with a fluid that is, initially, at a different temperature T and density ρ , here assumed to follow
the ideal equation of state P= ρkBT/m. If the macroscopic pressures in the two halves are different, ρLTL 6= ρRTR, then
the pressure difference will push the piston to perform macroscopic oscillations with a period that can be estimated
by assuming that each half undergoes an adiabatic transformation (PV γ = const.). These oscillations are damped by
viscous friction and lead to the piston essentially coming to rest in a state of mechanical equilibrium, ρLTL = ρRTR.
This stage of the relaxation from non-equilibrium to mechanical equilibrium has been shown to be well-described by
deterministic hydrodynamics [30].

The state of mechanical equilibrium is however not a state of true thermodynamic equilibrium, which also requires
equality of the temperatures on the two sides of the piston. Reaching full equilibrium requires heat transfer through the



piston, but the piston is adiabatic and does not conduct heat. In classical deterministic hydrodynamics the piston would
just stand still and never reach full equilibrium. It has been realized long ago that heat is slowly transferred through
the mechanical asymmetric fluctuations of the piston due to its thermal motion, until the temperatures on both sides of
the piston equilibrate and the fluctuations become symmetric. This equilibration takes place through a single degree of
freedom (the piston position) coupling the two large reservoirs, and it would be astronomically slow in a macroscopic
laboratory setting. While various Langevin or kinetic theories have been developed for the effective heat conduction
of the adiabatic piston (see Refs. [29, 30, 31] and references therein), there is no complete theoretical understanding of
the effective heat conductivity, especially in dense fluids. Molecular dynamic simulations have been performed in the
past [29, 30] using hard-disk fluids, but the very long runs required to reach thermodynamic equilibrium for massive
pistons have limited the size of the systems that could be studied.

Here we apply our hybrid method to the adiabatic piston problem in two dimensions, using a non-linear two-
dimensional implementation of the Runge-Kutta integrator described in Ref. [33] as the continuum solver. The choice
of two dimensions is for purely computational reasons. Firstly, the number of particles required to fill a box of
sufficient size is much smaller thus allowing for long particle simulations. Secondly, in order to implement the piston
in our particle scheme we reused the same mixed event-driven/time-driven handling [27] as we used for the VACF
computations. Namely, we made a piston out of Nb small impermeable beads, connected together to form a barrier
between the two box halves, as illustrated in Fig. 2. In two dimensions, by ensuring that two piston beads never
separate by more than a given distance we can ensure that two I-DSMC particles on opposite sides of the piston cannot
possibly collide and thus the piston will be insulating. We have studied two different types of pistons, a flexible piston
where the the beads are tethered together to form a chain [27] that is stretched but where each individual bead can still
move independently of the others, and a rigid piston that is obtained with a slight modification of the event loop to
move all of the piston beads in unison. While at the macroscopic level the exact shape of the piston should not make a
big difference, we have found that increasing the number of degrees of freedom of the piston from one to Nb makes a
significant difference in the thermal conductivity of the piston, and therefore, we will focus here on rigid pistons as in
the traditional formulation.

FIGURE 2. An illustration of the computational setup used for the adiabatic piston computations. Only the central portion of the
box of aspect ratio 6×1 is shown. Left of the piston the gas is cold and dense; to the right it is hot and dilute. The piston beads (red
disks) separate the box into two halves, and are surrounded on each side by a fluid of I-DSMC particles (smaller green disks), which
is twice denser but also twice cooler in the left half than in the right half. The microscopic grid is shown with thinner light blue
lines and the hydrodynamic grid is shown with thicker dark blue lines. The interface between the particle and continuum regions is
highlighted with a thick red line. A snapshot of the values of the hydrodynamic variables in each continuum cell is shown using a
large purple disk whose size is proportional to the density and its opaqueness is proportional to the temperature, and an arrow for
the fluctuating velocities.

The hybrid method setup for the adiabatic piston is illustrated in Fig. 2. We use a two-dimensional Maxwell I-DSMC
particle fluid (φ = 1, χ = 1) with collision diameter D= 0.1 (hard-sphere diameter Ds =D/2) and a piston composed of
Nb = 40 beads of diameter Db = 0.0955. The particle subdomain is limited to a few continuum cells around the piston,
which we keep at about two or more continuum cells on each side of the piston, so that the unreasonable hydrodynamic
values in the cells that overlap the piston do not affect the continuum solver appreciably. Periodic boundary conditions
are applied along the y dimension (parallel to the piston) with the width of the domain Ly = 4 being 40 microscopic
cells, while adiabatic walls were placed at the ends of the box whose total length Lx = 24 was 240 microscopic cells.
We have studied various sizes for the macroscopic cells, and report results for a quasi one-dimensional continuum grid
in which each macro cell contains 4× 40 micro cells, corresponding to about 200 particles per continuum cell. We
also present results for a two-dimensional continuum grid where each macro cell contains 8×10 micro cells.
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FIGURE 3. Relaxation of a rigid piston of mass M/m = 1000 from an initial state of mechanical equilibrium (x = 8) to a state of
thermodynamic equilibrium (x = 12). The inset emphasizes the initial exponential decay on a semi-log scale. The hybrid runs used
a particle subdomain of width wP = 2 on each side of the piston and continuum cells that were composed of either 4×40 or 8×10
microscopic cells. For the deterministic hybrid the macro cell size makes little difference so we only show the 4×40 case.

A comparison of the all-particle, stochastic-PDE hybrid, and deterministic-PDE hybrid results is shown in Fig. 3
for the relaxation of a piston of mass M = 1000m initially in mechanical equilibrium at position x = 8 = Lx/3. The
initial conditions were kBTL = 2/3, ρL = 2/3 and kBTR = 4/3, ρL = 1/3, so that there is an equal mass on each
side of the piston. At the true equilibrium state the piston remains close to the middle of the box, xeq = L/2 = 12,
with equal density on each side. The results shown are averages over 10 samples, but it should be emphasized that
each run exhibits thermal oscillations of the piston position that are diminished by direct averaging because they have
different (random) phases. At thermodynamic equilibrium, the frequency of thermally-driven oscillations, estimated
using a quasi-adiabatic harmonic approximation, is ω2 ≈ NkBT/ [Mx(Lx− x)] and the amplitude of the oscillations is
on the order of ∆x2 ≈ x(Lx−x)/N, where N is the number of particles per chamber. Figure 3 shows that the stochastic
hybrid is able to correctly reproduce the rate of exponential relaxation of the piston toward equilibrium with many
fewer particles than the purely particle runs, while the deterministic hybrid fails. We find a slight dependence on the
exact details of the hybrid calculations such as cell size or the width of the particle subdomain, however, in general, the
stochastic hybrid is remarkably robust and accurate. At the same time, the importance of including thermal fluctuations
in the continuum subdomain is evident, just as we observed for the VACF computations in the previous section.

SUMMARY AND CONCLUSIONS

This paper presents two cases in which hybrid particle/continuum calculations were performed to study systems with
Brownian motion. Our results for both the neutrally-buoyant bead and the adiabatic piston clearly demonstrate that a
large massive suspended body cannot have the correct Brownian dynamics unless thermal fluctuations are consistently
included in the full computational domain. Massive and large suspended bodies have longer relaxation times and thus
it is not surprising that long-wavelength, slowly-decaying, hydrodynamic fluctuations play a prominent role. Although
we earlier reported [34, 35, 36, 37] a suppression of fluctuations in the particle region of a hybrid using a continuum
PDE solver, the impact on the Brownian dynamics is surprisingly significant. Thus for multi-scale problems of this
type in the continuum region of particle/continuum hybrid one must use a stochastic hydrodynamic scheme, such as
those described in [33], even if a large particle subdomain is used.
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